3 resultados para Non-classical hla

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

End-stopped cells in cortical area V1, which combine out- puts of complex cells tuned to different orientations, serve to detect line and edge crossings (junctions) and points with a large curvature. In this paper we study the importance of the multi-scale keypoint representa- tion, i.e. retinotopic keypoint maps which are tuned to different spatial frequencies (scale or Level-of-Detail). We show that this representation provides important information for Focus-of-Attention (FoA) and object detection. In particular, we show that hierarchically-structured saliency maps for FoA can be obtained, and that combinations over scales in conjunction with spatial symmetries can lead to face detection through grouping operators that deal with keypoints at the eyes, nose and mouth, especially when non-classical receptive field inhibition is employed. Al- though a face detector can be based on feedforward and feedback loops within area V1, such an operator must be embedded into dorsal and ventral data streams to and from higher areas for obtaining translation-, rotation- and scale-invariant face (object) detection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Keypoints (junctions) provide important information for focus-of-attention (FoA) and object categorization/recognition. In this paper we analyze the multi-scale keypoint representation, obtained by applying a linear and quasi-continuous scaling to an optimized model of cortical end-stopped cells, in order to study its importance and possibilities for developing a visual, cortical architecture.We show that keypoints, especially those which are stable over larger scale intervals, can provide a hierarchically structured saliency map for FoA and object recognition. In addition, the application of non-classical receptive field inhibition to keypoint detection allows to distinguish contour keypoints from texture (surface) keypoints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the geometrically non linear analysis of thin plate/shell laminated structures with embedded integrated piezoelectric actuors or sensors layers and/or patches.The model is based on the Kirchhoff classical laminated theory and can be applied to plate and shell adaptive structures with arbitrary shape, general mechanical and electrical loadings. the finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of fredom for the generalized displacements and one eçlectrical potential degree of freedom for each piezoelectric layer or patch. An updated Lagrangian formulation associated to Newton-Raphson technique is used to solve incrementally and iteratively the equilibrium equation.The model is applied in the solution of four illustrative cases, and the results are compared and discussedwith alternative solutions when available.